%I #18 Dec 09 2024 14:26:35
%S 3,5,11,13,31,53,113,131,151,311,313,331,353,1151,1153,1511,1531,1553,
%T 3313,3331,3511,3533,5113,5153,5333,5351,5531,11113,11131,11311,11351,
%U 11353,11551,13151,13313,13331,13513,13553,15131,15313,15331,15511,15551
%N Primes that contain only the digits (1, 3, 5).
%H Chai Wah Wu, <a href="/A260224/b260224.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {3, 5, 1}]=={} &]
%t Select[Flatten[Table[FromDigits/@Tuples[{1,3,5},n],{n,5}]],PrimeQ] (* _Harvey P. Dale_, Mar 03 2020 *)
%o (Magma) [p: p in PrimesUpTo(40000) | Set(Intseq(p)) subset [3, 5, 1]];
%o (Python)
%o from gmpy2 import is_prime, mpz
%o from itertools import product
%o A260224_list = [int(''.join(x)) for n in range(1,10) for x in product('135',repeat=n) if is_prime(mpz(''.join(x)))] # _Chai Wah Wu_, Jul 21 2015
%Y Subsequence of A030096. A004022, A020451, A020453, and A020462 are subsequences.
%Y Cf. similar sequences listed in A260223.
%Y Cf. A020451, A020453, A020462.
%K nonn,easy,base
%O 1,1
%A _Vincenzo Librandi_, Jul 21 2015