|
|
A260201
|
|
Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000000 00000001 or 00010001.
|
|
1
|
|
|
44, 80, 207, 479, 1163, 2864, 6895, 16690, 40598, 98367, 238383, 578373, 1402450, 3400311, 8246174, 19996576, 48488613, 117582381, 285129777, 691413726, 1676626449, 4065695950, 9858990214, 23907290449, 57973356043, 140580903753
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = a(n-1) + a(n-2) + 5*a(n-3) + 2*a(n-4) + a(n-5) - a(n-7) - a(n-8) for n>9.
Empirical g.f.: x*(44 + 36*x + 83*x^2 - 28*x^3 - 11*x^4 - 17*x^5 - 21*x^6 - 5*x^7 + 12*x^8) / (1 - x - x^2 - 5*x^3 - 2*x^4 - x^5 + x^7 + x^8). - Colin Barker, Dec 28 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..1....1..0..0..1
..1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0....0..0..0..0
..0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0
..0..0..0..0....0..0..1..0....0..0..0..0....0..0..0..0....0..0..0..0
..1..0..0..0....0..0..0..0....1..0..0..1....1..0..0..0....0..0..0..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|