login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of distinct sums s + t where s, t are divisors of n.
1

%I #28 Aug 29 2018 15:18:51

%S 1,3,3,6,3,9,3,10,6,10,3,16,3,10,9,15,3,19,3,20,10,10,3,26,6,10,10,20,

%T 3,28,3,21,10,10,10,33,3,10,10,32,3,32,3,21,18,10,3,40,6,21,10,21,3,

%U 33,10,32,10,10,3,50,3,10,20,28,10,33,3,21,10,34

%N a(n) is the number of distinct sums s + t where s, t are divisors of n.

%C s and t need not be distinct.

%C a(n) = 3 if and only if n is prime.

%C If p is prime, a(p^k) = A000217(k+1).

%C If p is in A005382, a(p*(2*p-1)) = 9. For all other members of A006881, a(n) = 10.

%C a(n) <= A000217(A000005(n)).

%H Robert Israel, <a href="/A260152/b260152.txt">Table of n, a(n) for n = 1..10000</a>

%H MathOverflow, <a href="http://mathoverflow.net/questions/223036">A different kind of divisor sums</a>

%e For n = 2 the divisors are 1 and 2, and the a(2) = 3 distinct sums are 1+1=2, 1+2=3, 2+2=4.

%p T:= proc(n) local D,x,y;

%p D:= numtheory:-divisors(n);

%p nops({seq(seq(x+y,x=D),y=D)})

%p end proc:

%p seq(T(n),n=1..100);

%o (PARI) a(n) = my(v=[], d = divisors(n)); for (i=1, #d, for (j=i, #d, v = concat(v, d[i]+d[j]))); #Set(v); \\ _Michel Marcus_, Aug 29 2018

%Y Cf. A000005, A000217, A005382, A006881, A007425.

%Y Cf. A048691 (with distinct products s*t rather than sums).

%K nonn

%O 1,2

%A _Robert Israel_, Nov 09 2015