login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by seven: p(i)<>i and (i-p(i) mod n <= 7 or p(i)-i mod n <= 7).
9

%I #27 Jan 06 2016 12:08:35

%S 1,0,1,2,9,44,265,1854,14833,133496,1334961,14684570,176214841,

%T 2290792932,32071101049,481066515734,2649865335040,14570246018686,

%U 80002336342276,438791546196382,2404416711392528,13164695578635648,72030936564665508,393911127182051942

%N Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by seven: p(i)<>i and (i-p(i) mod n <= 7 or p(i)-i mod n <= 7).

%C a(n) = A000166(n) for n <= 15.

%p a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->

%p `if`(i<>j and (i-j mod n<=7 or j-i mod n<=7), 1, 0)))):

%p seq(a(n), n=0..16);

%t a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 7 || Mod[j - i, n] <= 7), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* _Jean-François Alcover_, Jan 06 2016, adapted from Maple *)

%Y Cf. A000166, A260074, A260081, A260092, A260094, A260111, A260115, A257953, A260216.

%Y Cf. A259780.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Jul 16 2015