login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Composites whose prime factorization in base 3 is an anagram of the number in base 3.
11

%I #18 Jul 24 2015 03:50:34

%S 16,25,160,960,1125,1888,3146,3488,3549,4064,4235,4335,4928,5415,5746,

%T 5875,7502,7847,8224,8414,8954,9633,10016,10192,11840,12103,12256,

%U 12704,12716,12844,16415,16820,16954,18784,18880,19264,19355,19481,22838

%N Composites whose prime factorization in base 3 is an anagram of the number in base 3.

%H Giovanni Resta, <a href="/A260047/b260047.txt">Table of n, a(n) for n = 1..10000</a>

%e 16 = 2^4. In base 3, 121 = 2^11.

%t Select[Range[10^6], !PrimeQ[#] && Sort@ IntegerDigits[#, 3] == Sort@ Flatten@ IntegerDigits[ Select[ Flatten@ FactorInteger@ #, #>1 &], 3] &] (* _Giovanni Resta_, Jul 14 2015 *)

%Y Cf. A260046, A260048, A260049, A260050, A260051, A260052, A260053, A025283, A260054, A260055.

%K base,easy,nonn

%O 1,1

%A _Stephen Tucker_, Jul 14 2015