login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000000 00000001 or 00001001
9

%I #4 Jul 10 2015 08:31:04

%S 34,67,67,155,146,155,353,439,439,353,808,1187,1603,1187,808,1884,

%T 3227,5449,5449,3227,1884,4340,8964,18681,22622,18681,8964,4340,9925,

%U 24719,64891,95505,95505,64891,24719,9925,22799,67952,222813,410928,501606

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000000 00000001 or 00001001

%C Table starts

%C ....34.....67.....155.......353........808........1884.........4340

%C ....67....146.....439......1187.......3227........8964........24719

%C ...155....439....1603......5449......18681.......64891.......222813

%C ...353...1187....5449.....22622......95505......410928......1749180

%C ...808...3227...18681.....95505.....501606.....2680028.....14134043

%C ..1884...8964...64891....410928....2680028....17818241....116786951

%C ..4340..24719..222813...1749180...14134043...116786951....949570630

%C ..9925..67952..764865...7428045...74413321...764080109...7710610630

%C .22799.187266.2637815..31652938..393674107..5022583984..62925603555

%C .52515.516133.9090487.134864351.2081832486.33001259193.513205618429

%H R. H. Hardin, <a href="/A259962/b259962.txt">Table of n, a(n) for n = 1..449</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +3*a(n-3) +5*a(n-4) +6*a(n-5) +6*a(n-6) +2*a(n-7) for n>8

%F k=2: [order 8] for n>9

%F k=3: [order 15] for n>16

%F k=4: [order 23] for n>25

%F k=5: [order 43] for n>44

%F k=6: [order 71] for n>73

%e Some solutions for n=4 k=4

%e ..0..0..0..0..0..1....1..0..0..0..0..0....0..0..1..0..0..0....0..1..0..0..0..0

%e ..0..1..0..0..1..0....0..0..0..1..0..0....0..0..0..0..1..0....0..0..0..1..0..0

%e ..0..0..0..0..0..0....0..1..0..0..0..0....0..1..0..0..0..0....0..0..0..0..0..0

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..0..0..1..0..0..0....0..0..0..0..1..0....1..0..0..0..0..0....1..0..0..0..0..0

%e ..1..0..0..0..0..1....1..0..0..0..0..0....0..0..0..0..1..0....0..0..0..0..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jul 10 2015