login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

For increasing z > 0, integers, y - x, where x^3 + y^3 = z^3 + 1, with y > x > 1.
2

%I #82 Oct 16 2015 09:49:28

%S 1,30,71,100,104,485,1169,705,887,1727,421,775,4499,4260,3180,5748,

%T 9719,307,6092,18521,20304,18825,32255,6174,33082,7601,29400,17607,

%U 13457,52487,1727,44794,41772,76328,1801,29707,80999,119789,111226,132105,122730,171071,123117,237275

%N For increasing z > 0, integers, y - x, where x^3 + y^3 = z^3 + 1, with y > x > 1.

%C It seems to me the sequence can never drop all the way to 1 again.

%C From _Robert Israel_, Oct 13 2015: (Start)

%C There are only finitely many n with a(n) = 1.

%C Such n correspond to solutions of the Diophantine equation x (2 x^2 + 3 x + 3) = z^3.

%C Since gcd(x, 2 x^2 + 3 x + 3) = 1 or 3, we get two cases:

%C if x is not divisible by 3, x = s^3, z = s^3 t^3 where 2 s^6 + 3 s^3 + 3 = t^3,

%C otherwise x = 9 s^3, z = 3 s t, where 54 s^6 + 9 s^3 + 1 = t^3.

%C The algebraic curves 2 s^6 + 3 s^3 + 3 = t^3 and 54 s^6 + 9 s^3 + 1 = t^3 both have genus 4, so by Faltings's theorem they have only finitely many rational solutions.

%C (End)

%H Robert G. Wilson v, <a href="/A259753/b259753.txt">Table of n, a(n) for n = 1..368</a>

%F a(n) = A050793(n) - A050792(n). - _Robert G. Wilson v_, Jul 21 2015

%e 10 - 9 = 1 is the first number in the sequence because 10^3 + 9^3 = 12^3 + 1^3 and no other lower z produces a result.

%p Cubes:= {seq(x^3, x=2..10^4)}:

%p count:= 0:

%p for z from 1 to 10^4 do

%p s:= z^3+1;

%p M:= map(t -> s-t, select(`<`,Cubes,floor(s/2))) intersect Cubes;

%p for m in M do

%p count:= count+1;

%p y:= simplify(m^(1/3));

%p x:= simplify((s-m)^(1/3));

%p A[count]:= y-x;

%p od

%p od:

%p seq(A[i],i=1..count); # _Robert Israel_, Oct 13 2015

%t y = 3; lst = {}; While[y < 100001, x = 2; While[x < y, z = (y^3 + x^3 - 1)^(1/3); If[IntegerQ[z], AppendTo[lst, {z, y, x, y - x}]; Print[{z, y, x, y - x}]]; x++]; y++]; Last@ Transpose@ Sort@ lst (* _Robert G. Wilson v_, Jul 21 2015 and modified Oct 14 2015 *)

%o (Python 3.x)

%o start = 12

%o end = 100000

%o print(start,end)

%o cubes = []

%o for i in range(0,end):

%o cubes.append(i**3)

%o for z in range(start,end):

%o target = cubes[z]+1

%o for x in range(2,z):

%o t = target-cubes[x]

%o y = int(t**(1/3)+.5)

%o if cubes[y] == t:

%o print(target,y,x,z,1,y-x,'\a')

%o break

%Y Cf. A001235.

%Y Cf. x = A050792, y = A050793, z = A050791 , x^3+y^3 = A050794.

%K nonn

%O 1,2

%A _David Rabahy_, Jul 21 2015