login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259730
Primes p such that both 2*p - 3 and 3*p - 2 are prime.
8
3, 5, 7, 11, 13, 23, 37, 43, 53, 67, 71, 113, 127, 137, 167, 181, 191, 193, 211, 251, 263, 331, 347, 373, 431, 433, 443, 461, 487, 587, 727, 751, 757, 907, 991, 1021, 1091, 1103, 1171, 1187, 1213, 1231, 1297, 1367, 1453, 1483, 1597, 1637, 1663, 1667, 1733
OFFSET
1,1
COMMENTS
A010051(2*a(n) - 3) * A010051(3*a(n) - 2) = 1;
A259758(n) = (2*a(n) - 3) * (3*a(n) - 2).
Except for a(1)=3 this is the same sequence as primes p such that A288814(3*p) - A288814(2*p) = 5. - David James Sycamore, Jul 22 2017
Furthermore, (A288814(3*p)*A288814(2*p))/6 belongs to A259758. - David James Sycamore, Jul 23 2017
LINKS
MATHEMATICA
Select[Prime@ Range@ 270, Times @@ Boole@ Map[PrimeQ, {2 # - 3, 3 # - 2}] > 0 &] (* Michael De Vlieger, Jul 22 2017 *)
Select[Prime[Range[300]], AllTrue[{2#-3, 3#-2}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 08 2020 *)
PROG
(Haskell)
import Data.List.Ordered (isect)
a259730 n = a259730_list !! (n-1)
a259730_list = a063908_list `isect` a088878_list
(PARI) lista(nn) = forprime(p=3, nn, if(isprime(2*p-3) && isprime(3*p-2), print1(p, ", "))); \\ Altug Alkan, Jul 22 2017
CROSSREFS
Intersection of A063908 and A088878; A172287, A259758.
Sequence in context: A154319 A080114 A088878 * A254673 A343976 A155916
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 05 2015
STATUS
approved