login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 or 00000011.
1

%I #8 Dec 26 2018 08:59:49

%S 32,54,140,242,312,722,1388,1974,3824,7718,12060,21218,42344,71394,

%T 121052,233030,412608,698390,1295276,2349522,4031384,7276274,13283916,

%U 23174102,41199248,74964486,132548156,234319298,423455688,755086082

%N Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 or 00000011.

%H R. H. Hardin, <a href="/A259716/b259716.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-3) + 3*a(n-4).

%F Empirical g.f.: 2*x*(16 + 27*x + 70*x^2 + 57*x^3) / (1 - 4*x^3 - 3*x^4). - _Colin Barker_, Dec 26 2018

%e Some solutions for n=4:

%e ..1..1..0....0..0..1....0..0..0....0..1..1....0..0..0....1..0..0....0..0..1

%e ..0..1..0....0..0..1....0..0..1....0..1..0....0..0..0....0..1..0....0..1..0

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..0..0

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0

%e ..1..0..0....1..1..0....0..1..0....0..1..0....0..0..0....1..0..0....0..1..0

%e ..1..0..0....0..0..0....1..0..0....0..1..0....1..1..0....0..0..0....0..1..0

%Y Column 1 of A259723.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 03 2015