login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n-1} k^5*sigma(k)*sigma(n-k).
8

%I #22 Jan 20 2024 09:19:35

%S 0,1,99,1264,10475,44820,185626,546560,1454841,3640950,7868245,

%T 16042176,31040789,59796968,97525350,177090560,276689076,467100189,

%U 681356055,1096023200,1533162960,2426544252,3205401854,4885539840,6250705625,9431254430,11831779350

%N a(n) = Sum_{k=1..n-1} k^5*sigma(k)*sigma(n-k).

%C This was formerly A001478.

%H Colin Barker, <a href="/A259693/b259693.txt">Table of n, a(n) for n = 1..1000</a>

%H J. Touchard, <a href="/A000385/a000385.pdf">On prime numbers and perfect numbers</a>, Scripta Math., 129 (1953), 35-39. [Annotated scanned copy]

%F From _Ridouane Oudra_, Dec 08 2023: (Start)

%F a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) - (691*n/254016)*sigma_5(n) - (65*n/254016)*sigma_11(n) + (691*n/1008)*A279889(n).

%F a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112 - 691*n/604800)*sigma_3(n) - (691*n/302400)*sigma_7(n) + (13*n/28800)*sigma_11(n) - (691*n/1260)*A279964(n).

%F a(n) = (-3455*n/3193344 + n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) + (-3455*n/290304 + 691*n^2/48384)*sigma_9(n) - (325*n/76032)*sigma_11(n) + (3455*n/12096)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)

%p S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(5);

%t S[n_, e_] := Sum[k^e * DivisorSigma[1, k] * DivisorSigma[1, n - k], {k, 1, n - 1}]

%t f[e_] := Table[S[n, e], {n, 1, 27}];f[5] (* _James C. McMahon_, Dec 19 2023 *)

%o (PARI) a(n) = sum(k=1, n-1, k^5*sigma(k)*sigma(n-k)) \\ _Colin Barker_, Jul 16 2015

%Y Cf. A000385, A000441, A000477, A000499, A259692, A259694, A259695, A259696.

%Y Cf. A279889, A279964.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Jul 03 2015