login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of sum(1/A112373(k): k=0..n), denominators = A112373.
2

%I #15 Dec 13 2023 08:45:49

%S 1,2,5,31,2419,176795035,883922739668546300971,

%T 1511516294872733607299090320742127160367108420362968907

%N Numerators of sum(1/A112373(k): k=0..n), denominators = A112373.

%H Reinhard Zumkeller, <a href="/A259644/b259644.txt">Table of n, a(n) for n = 0..10</a>

%H Andrew N. W. Hone, <a href="http://list.seqfan.eu/oldermail/seqfan/2015-July/015015.html">Update on A112373</a>, SeqFan list, July 02 2015.

%H Andrew N. W. Hone, <a href="http://arxiv.org/abs/1507.00063">Curious continued fractions, nonlinear recurrences and transcendental numbers</a>, arXiv:1507.00063 [math.NT], 2015.

%e Sum(1/A112373(k)) = 1, 2, 5/2, 31/12, 2419/936, 176795035/68408496, ...

%t (* b = A112373 *)

%t b[n_] := b[n] = If[n < 2, 1, (b[n-1]^3 + b[n-1]^2)/b[n-2]];

%t a[n_] := Sum[1/b[k], {k, 0, n}] // Numerator;

%t Table[a[n], {n, 0, 7}] (* _Jean-François Alcover_, Dec 15 2018 *)

%o (Haskell)

%o import Data.Ratio (numerator)

%o a259644 n = a259644_list !! n

%o a259644_list = map numerator $

%o scanl1 (+) $ map (recip . fromIntegral) a112373_list

%Y Cf. A112373.

%K nonn,frac

%O 0,2

%A _Reinhard Zumkeller_, Jul 02 2015