Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 30 2015 17:12:12
%S 1,3,7,5,9,11,15,13,17,21,23,19,25,27,31,29,33,35,39,37,41,43,49,45,
%T 47,55,51,59,57,53,61,63,67,65,69,71,75,73,81,77,79,85,87,83,89,93,95,
%U 91,97,105,99,103,101,109,111,107,113,115,121,117,119,125,129
%N a(1) = 1, for n > 1 a(n) = smallest number not already in the sequence such that the arithmetic mean of two neighboring terms is a squarefree number.
%C A259605(n) = (a(n) + a(n+1)) / 2;
%C conjecture: sequence is a permutation of the odd numbers;
%C a(A259570(n)) = 2*n-1.
%H Reinhard Zumkeller, <a href="/A259565/b259565.txt">Table of n, a(n) for n = 1..10000</a>
%o (Haskell)
%o import Data.List (delete)
%o a259565 n = a259565_list !! (n-1)
%o a259565_list = 1 : f 1 [3, 5 ..] where
%o f x zs = g zs where
%o g (y:ys) = if a008966 ((x + y) `div` 2) == 1
%o then y : f y (delete y zs) else g ys
%Y Cf. A086517, A259260, A259429, A259542, A008966, A005117, A005408, A259570.
%Y Cf. A259605.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Jun 30 2015