login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pentagonal numbers (A000326) that are the sum of seven consecutive pentagonal numbers.
5

%I #8 May 13 2022 17:20:15

%S 287,532,17145051,32963672,1106094475927,2126616990876,

%T 71358579001465427,137196568515066592,4603627364594444737551,

%U 8851099419054387781412,296998415728087428795555787,571019827783678204813603176,19160555787678205016722039960967

%N Pentagonal numbers (A000326) that are the sum of seven consecutive pentagonal numbers.

%H Colin Barker, <a href="/A259402/b259402.txt">Table of n, a(n) for n = 1..416</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,64514,-64514,-1,1).

%F G.f.: -7*x*(1968*x^4+1813*x^3-195857*x^2+35*x+41) / ((x-1)*(x^2-254*x+1)*(x^2+254*x+1)).

%e 287 is in the sequence because P(14) = 287 = 5+12+22+35+51+70+92 = P(2)+ ... +P(8).

%t LinearRecurrence[{1,64514,-64514,-1,1},{287,532,17145051,32963672,1106094475927},20] (* _Harvey P. Dale_, May 13 2022 *)

%o (PARI) Vec(-7*x*(1968*x^4+1813*x^3-195857*x^2+35*x+41)/((x-1)*(x^2-254*x+1)*(x^2+254*x+1)) + O(x^20))

%Y Cf. A000326, A133301, A257714, A257715, A259403, A259404.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Jun 26 2015