login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromic numbers in bases 3 and 7 written in base 10.
16

%I #20 Aug 18 2015 12:57:29

%S 0,1,2,4,8,16,40,100,121,142,164,242,328,400,1312,8200,9103,14762,

%T 54008,76024,108016,112048,233920,532900,639721,741586,2585488,

%U 3316520,11502842,24919360,35664908,87001616,184827640,4346524576,5642510512,11641189600,65304259157,68095147754,469837033600,830172165614,17136683996456,21772277941544,22666883572232,45221839119556

%N Palindromic numbers in bases 3 and 7 written in base 10.

%H Giovanni Resta, <a href="/A259377/b259377.txt">Table of n, a(n) for n = 1..72</a>

%H <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>

%F Intersection of A014190 and A029954.

%e 142 is in the sequence because 142_10 = 262_7 = 12021_3.

%t (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 7]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst

%t b1=3; b2=7; lst={};Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1] && d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Jul 17 2015 *)

%Y Cf. A007632, A007633, A029731, A029804, A029961, A029962, A029963, A029964, A029965, A029966, A029967, A029968, A029969, A029970, A048268, A060792, A097855, A097856, A097928, A097929, A097930, A097931, A099145, A099146, A099165, A182232, A182233, A182234, A250408, A250409, A250410, A250411, A250412, A259374, A259375, A259376, A259377, A259378, A249156, A259380, A259381, A259382, A259383, A259384, A259385, A259386, A259387, A259388, A259389, A259390.

%K nonn,base

%O 1,3

%A Eric A. Schmidt and _Robert G. Wilson v_, Jul 16 2015