login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*n*A259319(n) - A259110(n)^2.
1

%I #27 Mar 01 2020 16:39:44

%S 0,256,3584,21504,84480,256256,652288,1462272,2976768,5617920,9974272,

%T 16839680,27256320,42561792,64440320,94978048,136722432,192745728,

%U 266712576,362951680,486531584,643340544,840170496,1084805120,1386112000,1754138880,2200214016

%N a(n) = 2*n*A259319(n) - A259110(n)^2.

%H Colin Barker, <a href="/A259320/b259320.txt">Table of n, a(n) for n = 1..1000</a>

%H J. L. Bailey, Jr., <a href="http://dx.doi.org/10.1214/aoms/1177732978">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359.

%H J. L. Bailey, <a href="/A002309/a002309.pdf">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = (64*(n^2-5*n^4+4*n^6))/45. - _Colin Barker_, Jun 29 2015

%F G.f.: -256*x^2*(x+1)*(x^2+6*x+1) / (x-1)^7. - _Colin Barker_, Jun 29 2015

%e n=3: 3584 = 6*1414 - 70^2.

%t LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,256,3584,21504,84480,256256,652288},40] (* _Harvey P. Dale_, Mar 01 2020 *)

%o (PARI) concat(0, Vec(-256*x^2*(x+1)*(x^2+6*x+1)/(x-1)^7 + O(x^100))) \\ _Colin Barker_, Jun 29 2015

%Y Cf. A259110, A259319.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Jun 24 2015