Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 16 2015 12:04:01
%S 6,105,58311,1008910,559902916,9687554415,5376187741821,
%T 93019896484620,51622154137063026,893177036357767525,
%U 495675918647891434531,8576285810087387291130,4759480119234899417304336,82349495455282056411663435,45700527609217585557064800441
%N Positive triangular numbers (A000217) that are pentagonal numbers (A000326) divided by 2.
%C Intersection of A000217 and A193866 (even pentagonal numbers divided by 2). - _Michel Marcus_, Jun 20 2015
%H Colin Barker, <a href="/A259156/b259156.txt">Table of n, a(n) for n = 1..502</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,9602,-9602,-1,1).
%F G.f.: -x*(x^3+594*x^2+99*x+6) / ((x-1)*(x^2-98*x+1)*(x^2+98*x+1)).
%e 6 is in the sequence because 6 is the 3rd triangular number, and 2*6 is the 3rd pentagonal number.
%t LinearRecurrence[{1, 9602, -9602, -1, 1}, {6, 105, 58311, 1008910, 559902916}, 20] (* _Vincenzo Librandi_, Jun 20 2015 *)
%o (PARI) Vec(-x*(x^3+594*x^2+99*x+6)/((x-1)*(x^2-98*x+1)*(x^2+98*x+1)) + O(x^20))
%Y Cf. A000217, A000326, A193866, A259157-A259167.
%K nonn,easy
%O 1,1
%A _Colin Barker_, Jun 19 2015