login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 13*n^2 + 52 is a square.
1

%I #43 Sep 08 2022 08:46:13

%S 3,36,393,4287,46764,510117,5564523,60699636,662131473,7222746567,

%T 78788080764,859446141837,9375119479443,102266868132036,

%U 1115560429972953,12168897861570447,132742316047301964,1447996578658751157,15795220049198960763,172299423962529817236,1879498443538629028833,20502183454962389499927

%N Numbers n such that 13*n^2 + 52 is a square.

%C The limit of a(n)/a(n-1) approaches (11+sqrt(117))/2 as n -> infinity.

%C The continued fraction [a(n); a(n), a(n), ...] = ((3+sqrt(13))/2)^(2*n-1).

%C Equivalently, numbers n such that (n^2+4)/13 is a square.

%C Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(13)). - _Greg Dresden_, Jul 22 2019

%C As 13*n^2 + 52 = 13 * (n^2 + 4), n == 3 (mod 13) or n == 10 (mod 13) alternately. - _Bernard Schott_, Jul 23 2019

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-1).

%F G.f.: 3*x*(1+x)/(1-11*x+x^2).

%F a(n) = 11*a(n-1) - a(n-2); a(0) = 3, a(1) = 36.

%F a(n) = floor(((3+sqrt(13))/2)^(2*n+1)+((3+sqrt(13))/2)^(1-2*n)).

%F a(n) = 3*A097783(n-1). - _R. J. Mathar_, Jun 07 2016

%t Table[Floor[((3 + Sqrt[13])/2)^(2*n + 1) + ((3 + Sqrt[13])/2)^(1 - 2 n)], {n, 21}] (* _Michael De Vlieger_, Jun 20 2015 *)

%t LinearRecurrence[{11, -1}, {3, 36}, 25] (* _Vincenzo Librandi_, Jul 23 2019 *)

%o (PARI) for(n=1,20,q=((3+sqrt(13))/2)^(2*n-1);print1(contfrac(q)[1],", "))

%o (Magma) I:=[3,36]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jul 23 2019

%Y Cf. A002878, A077444.

%K nonn,easy

%O 1,1

%A _Derek Orr_, Jun 18 2015