login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259101
Square array read by antidiagonals arising in the enumeration of corners.
1
1, 2, 2, 5, 16, 5, 14, 91, 91, 14, 42, 456, 936, 456, 42, 132, 2145, 7425, 7425, 2145, 132, 429, 9724, 50765, 85800, 50765, 9724, 429, 1430, 43043, 315315, 805805, 805805, 315315, 43043, 1430, 4862, 187408, 1831648, 6584032, 9962680, 6584032, 1831648, 187408, 4862, 16796, 806208, 10127988, 48674808, 103698504, 103698504, 48674808, 10127988, 806208, 16796
OFFSET
0,2
COMMENTS
See Kreweras (1979) for precise definition.
LINKS
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295.
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
FORMULA
Kreweras gives an explicit formula for the general term (see bottom display on page 291).
EXAMPLE
The first few antidiagonals are:
1,
2, 2,
5, 16, 5,
14, 91, 91, 14,
42, 456, 936, 456, 42,
132, 2145, 7425, 7425, 2145, 132,
...
MATHEMATICA
a[x_, y_] := (2(2x+2y+1)!(x^2+3x*y+y^2+4x+4y+3)) / (x!(x+1)!y!(y+1)!(x+y+1)(x+y+2)(x+y+3));
Table[Table[a[x-y, y], {y, 0, x}] // Reverse, {x, 0, 9}] // Flatten (* Jean-François Alcover, Aug 11 2017 *)
CROSSREFS
The first row and column of the array are the Catalan numbers A000108.
The second row and column are A214824.
Sequence in context: A089848 A033550 A032130 * A377013 A184313 A158059
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jun 22 2015
EXTENSIONS
More terms from Jean-François Alcover, Aug 11 2017
STATUS
approved