OFFSET
0,2
COMMENTS
See Kreweras (1979) for precise definition.
LINKS
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295.
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
FORMULA
Kreweras gives an explicit formula for the general term (see bottom display on page 291).
EXAMPLE
The first few antidiagonals are:
1,
2, 2,
5, 16, 5,
14, 91, 91, 14,
42, 456, 936, 456, 42,
132, 2145, 7425, 7425, 2145, 132,
...
MATHEMATICA
a[x_, y_] := (2(2x+2y+1)!(x^2+3x*y+y^2+4x+4y+3)) / (x!(x+1)!y!(y+1)!(x+y+1)(x+y+2)(x+y+3));
Table[Table[a[x-y, y], {y, 0, x}] // Reverse, {x, 0, 9}] // Flatten (* Jean-François Alcover, Aug 11 2017 *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jun 22 2015
EXTENSIONS
More terms from Jean-François Alcover, Aug 11 2017
STATUS
approved