login
Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Jun 16 2015 10:35:03

%S 2444,6271,18341,50654,131557,317141,701282,1467387,2896645,5442921,

%T 9816954,17096392,28757926,47075958,75218973,117547715,179888422,

%U 270566220,400421776,584035872,840159021,1193892062,1677629192

%N Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Row 2 of A259006

%H R. H. Hardin, <a href="/A259007/b259007.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = -a(n-1) +7*a(n-3) +15*a(n-4) +10*a(n-5) -19*a(n-6) -77*a(n-7) -98*a(n-8) -23*a(n-9) +186*a(n-10) +405*a(n-11) +372*a(n-12) -83*a(n-13) -867*a(n-14) -1362*a(n-15) -921*a(n-16) +671*a(n-17) +2591*a(n-18) +3274*a(n-19) +1574*a(n-20) -2170*a(n-21) -5593*a(n-22) -5929*a(n-23) -1892*a(n-24) +4569*a(n-25) +9216*a(n-26) +8319*a(n-27) +1527*a(n-28) -7084*a(n-29) -11873*a(n-30) -9193*a(n-31) -568*a(n-32) +8475*a(n-33) +12068*a(n-34) +8049*a(n-35) -499*a(n-36) -7936*a(n-37) -9691*a(n-38) -5529*a(n-39) +1132*a(n-40) +5809*a(n-41) +6104*a(n-42) +2881*a(n-43) -1124*a(n-44) -3289*a(n-45) -2947*a(n-46) -1062*a(n-47) +721*a(n-48) +1407*a(n-49) +1037*a(n-50) +238*a(n-51) -314*a(n-52) -432*a(n-53) -241*a(n-54) -17*a(n-55) +90*a(n-56) +85*a(n-57) +30*a(n-58) -5*a(n-59) -15*a(n-60) -8*a(n-61) -a(n-62) +a(n-63) +a(n-64) for n>82

%e Some solutions for n=4

%e ..1..1..0..1..1..0....0..0..0..1..0..1....0..0..0..0..0..1....0..0..0..0..0..0

%e ..0..0..0..0..1..0....0..0..0..0..0..1....0..0..0..0..1..1....0..1..0..1..1..0

%e ..1..1..1..1..1..0....1..0..1..1..1..0....1..1..1..1..1..0....0..1..0..1..1..1

%e ..0..1..1..0..0..1....0..1..1..0..1..0....0..1..0..1..1..0....0..1..0..1..1..0

%Y Cf. A259006

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 16 2015