login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258959
Number of (n+2) X (1+2) 0..1 arrays with no 3 X 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 0 or 3 and no column sum 0 or 3.
1
66, 158, 214, 462, 676, 1374, 2040, 4104, 6136, 12296, 18424, 36872, 55288, 110600, 165880, 331784, 497656, 995336, 1492984, 2985992, 4478968, 8957960, 13436920, 26873864, 40310776, 80621576, 120932344, 241864712, 362797048, 725594120
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) for n>9.
Empirical g.f.: 2*x*(33 + 112*x + 87*x^2 + 2*x^3 + 11*x^4 + 11*x^5 - 3*x^7 - x^8) / ((1 + x)*(1 - 3*x^2)). - Colin Barker, Dec 23 2018
EXAMPLE
Some solutions for n=4:
..1..1..0....1..0..1....0..0..1....0..0..1....1..0..1....0..1..1....0..1..0
..1..0..0....1..1..0....1..0..0....1..1..0....1..1..0....1..0..0....1..0..1
..0..1..1....0..0..1....0..1..1....0..1..0....0..1..0....0..0..1....1..0..1
..1..0..0....1..0..0....1..0..0....1..0..1....1..0..1....1..1..0....0..1..0
..0..1..1....0..1..1....0..1..1....0..0..1....1..0..1....0..1..0....0..1..1
..0..0..1....1..0..0....0..1..1....0..1..0....0..1..0....0..0..1....1..0..0
CROSSREFS
Column 1 of A258966.
Sequence in context: A278783 A358102 A258966 * A062035 A043514 A044398
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 15 2015
STATUS
approved