login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum equal to the antidiagonal sum or central row sum equal to the central column sum.
1

%I #9 Dec 23 2018 08:14:42

%S 200,576,1680,5184,15840,46656,138240,419904,1270080,3779136,11275200,

%T 34012224,102409920,306110016,916090560,2754990144,8278407360,

%U 24794911296,74304112320,223154201664,669946334400,2008387814976

%N Number of (n+2) X (1+2) 0..1 arrays with no 3 x 3 subblock diagonal sum equal to the antidiagonal sum or central row sum equal to the central column sum.

%H R. H. Hardin, <a href="/A258918/b258918.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) - 6*a(n-2) + 18*a(n-3).

%F Empirical g.f.: 8*x*(25 - 3*x + 144*x^2) / ((1 - 3*x)*(1 + 6*x^2)). - _Colin Barker_, Dec 23 2018

%e Some solutions for n=4:

%e ..0..1..1....1..1..0....1..0..0....1..0..0....1..0..1....1..0..0....0..0..1

%e ..1..0..0....0..1..1....0..1..1....1..0..1....1..1..1....1..1..0....0..1..0

%e ..1..1..1....1..1..1....1..0..1....0..0..0....1..0..0....0..0..0....1..1..0

%e ..0..0..0....1..0..0....0..0..0....1..1..0....0..1..1....0..0..0....0..1..1

%e ..1..1..0....0..1..1....1..1..0....1..0..0....0..0..1....1..1..0....0..1..0

%e ..0..0..1....0..0..0....1..0..0....0..1..1....1..1..0....1..0..0....1..0..0

%Y Column 1 of A258921.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 14 2015