login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n*a(n+1) = (2*n^2+2*n+1)*a(n)+(n+1)*a(n-1); a(0)=1, a(1)=0.
1

%I #19 Jul 10 2015 16:05:17

%S 1,0,2,13,111,1154,14212,202683,3288125,59825284,1206806406,

%T 26736229385,645416587627,16863580242438,474172509285896,

%U 14277112865214199,458325203221106937,15626871667138245128,563971893271395540490,21478758747365642882949

%N n*a(n+1) = (2*n^2+2*n+1)*a(n)+(n+1)*a(n-1); a(0)=1, a(1)=0.

%H Charles R Greathouse IV, <a href="/A258916/b258916.txt">Table of n, a(n) for n = 0..403</a>

%F a(n) ~ (BesselI(0,1)-BesselI(1,1)) * 2^(n-1) * n!. - _Vaclav Kotesovec_, Jul 10 2015

%t RecurrenceTable[{a[0]==1, a[1]==0, n*a[n+1]== (2n^2 +2*n+1)*a[n] + (n+1)*a[n-1]}, a, {n, 30}]

%o (PARI) a=vector(20); a[1]=0;a[2]=2;for(n=3,#a, a[n]=((2*n^2 - 2*n + 1)*a[n-1] + n*a[n-2])/(n-1)); concat(1,a) \\ _Charles R Greathouse IV_, Jul 09 2015

%K nonn,easy

%O 0,3

%A _G. C. Greubel_, Jul 09 2015