login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers n such that both n and prime(n) have the same digital root.
6

%I #16 Jun 18 2015 04:02:22

%S 25,32,46,56,70,88,92,98,100,113,121,130,145,146,152,175,176,182,185,

%T 206,209,212,218,227,236,239,244,248,274,293,295,301,316,317,320,323,

%U 331,338,350,352,355,362,377,386,394,397,398,406,409,413,439

%N Integers n such that both n and prime(n) have the same digital root.

%C Integers n such that A010888(n) = A038194(n).

%C Conjecture: a(n) ~ 9n. - _Charles R Greathouse IV_, Jun 17 2015

%H Charles R Greathouse IV, <a href="/A258876/b258876.txt">Table of n, a(n) for n = 1..10000</a>

%e Both 25 and prime(25) = 97 have 7 for a digital root.

%e Both 32 and prime(32) = 131 have 5 for a digital root.

%t Reap[Do[If[FixedPoint[Total[IntegerDigits[#]] &, n] == Mod[Prime[n], 9], Sow[n]], {n, 439}]][[2, 1]] (* Seidov *)

%t Select[Range[500], Mod[#, 9] == Mod[Prime[#], 9] &] (* _Alonso del Arte_, Jun 17 2015 *)

%o (PARI) isok(n) = (n % 9) == (prime(n) % 9); \\ _Michel Marcus_, Jun 17 2015

%o (PARI) n=0; forprime(p=2,1e4, if((p-n++)%9==0, print1(n", "))) \\ _Charles R Greathouse IV_, Jun 17 2015

%Y Cf. A010888, A038194.

%K base,nonn

%O 1,1

%A _Zak Seidov_, Jun 13 2015