login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second pi-based arithmetic derivative of n.
3

%I #7 Jun 25 2015 08:03:34

%S 0,0,0,1,4,2,4,4,20,20,5,3,32,7,19,8,80,4,37,12,80,25,26,12,76,53,30,

%T 135,64,11,16,5,208,12,11,13,188,20,41,64,188,6,21,15,192,88,13,19,

%U 448,116,86,58,108,32,351,49,156,53,56,7,260,33,16,332,704,73

%N Second pi-based arithmetic derivative of n.

%H Alois P. Heinz, <a href="/A258852/b258852.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = A258851^2(n).

%F a(A258862(n)) = n.

%p with(numtheory):

%p d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):

%p A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:

%p a:= n-> A(n, 2):

%p seq(a(n), n=0..100);

%Y Column k=2 of A258850.

%Y Cf. A000720, A258851, A258862.

%K nonn

%O 0,5

%A _Alois P. Heinz_, Jun 12 2015