login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The pi-based arithmetic derivative of n: a(p) = pi(p) for p prime, a(u*v) = a(u)*v + u*a(v), where pi = A000720.
50

%I #39 Mar 07 2017 13:16:30

%S 0,0,1,2,4,3,7,4,12,12,11,5,20,6,15,19,32,7,33,8,32,26,21,9,52,30,25,

%T 54,44,10,53,11,80,37,31,41,84,12,35,44,84,13,73,14,64,87,41,15,128,

%U 56,85,55,76,16,135,58,116,62,49,17,136,18,53,120,192,69,107

%N The pi-based arithmetic derivative of n: a(p) = pi(p) for p prime, a(u*v) = a(u)*v + u*a(v), where pi = A000720.

%C The pi-based variant of the arithmetic derivative of n (A003415).

%H Alois P. Heinz, <a href="/A258851/b258851.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_derivative">Arithmetic derivative</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = n * Sum e_j*pi(p_j)/p_j for n = Product p_j^e_j with pi = A000720.

%F a(A258861(n)) = n; A258861 = pi-based antiderivative of n.

%F a(a(A258862(n))) = n; A258862 = second pi-based antiderivative of n.

%F a(a(a(A258995(n)))) = n; A258995 = third pi-based antiderivative of n.

%F a(0) = a(0*p) = a(0)*p + 0*a(p) = a(0)*p for all p => a(0) = 0.

%F a(p) = a(1*p) = a(1)*p + 1*a(p) = a(1)*p + a(p) for all p => a(1) = 0.

%F a(u^v) = v * u^(v-1) * a(u).

%p with(numtheory):

%p a:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):

%p seq(a(n), n=0..100);

%t a[n_] := n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]; a[0] = 0; Array[a, 100, 0] (* _Jean-François Alcover_, Apr 24 2016 *)

%o (PARI) A258851(n)=n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i]) \\ _M. F. Hasler_, Jul 13 2015

%o (Scheme) (define (A258851 n) (if (<= n 1) 0 (+ (* (A055396 n) (A032742 n)) (* (A020639 n) (A258851 (A032742 n)))))) ;; _Antti Karttunen_, Mar 07 2017

%Y Column k=1 of A258850, A258997.

%Y First differences give A258863.

%Y Partial sums give A258864.

%Y Cf. A000720 (pi), A003415, A020639, A032742, A055396, A056239, A258861, A258862, A258995, A278510.

%K nonn,look

%O 0,4

%A _Alois P. Heinz_, Jun 12 2015