login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258818
a(n) = (!0 + !1 + ... + !(p-1)) mod p, where p = prime(n).
1
1, 2, 3, 0, 4, 9, 13, 4, 14, 25, 4, 30, 4, 9, 32, 30, 45, 48, 12, 7, 34, 74, 40, 76, 96, 57, 64, 90, 89, 50, 117, 87, 29, 46, 108, 113, 10, 70, 111, 150, 14, 153, 119, 26, 81, 78, 112, 209, 173, 177, 186, 126, 26, 25, 60, 74, 23, 27, 138, 49, 72, 211, 252, 169
OFFSET
1,2
COMMENTS
!n is a subfactorial number (A000166).
This is A173184(p) mod p where p = prime(n) .
LINKS
EXAMPLE
For n=3, prime(3) = 5 => !0 + !1 + !2 + !3 + !4 = 1 + 0 + 1 + 2 + 9 = 13 == 3 (mod 5), so a(3) = 3.
MAPLE
A:= proc(n) option remember; if n<=1 then 1-n else (n-1)*(procname(n-1)+procname(n-2)); fi; end;
a:=n->n!*sum((-1)^k/k!, k=0..n):
lf:=n->add(A(k), k=0..n-1); [seq(lf(ithprime(n)) mod ithprime(n), n=1..40)];
MATHEMATICA
Table[Mod[Total[Subfactorial[Range[0, n-1]]], n], {n, Prime[Range[70]]}]
CROSSREFS
Cf. A258817.
Sequence in context: A375417 A344276 A363966 * A261275 A140326 A261781
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 11 2015
STATUS
approved