Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 07 2023 04:56:42
%S 9,9,9,5,5,4,5,0,7,8,9,0,5,3,9,9,0,9,4,9,6,3,4,6,5,4,9,8,9,9,0,5,8,9,
%T 8,3,0,0,2,1,8,8,4,8,1,9,4,9,9,7,5,7,9,2,2,5,2,6,4,9,2,1,8,9,4,1,9,0,
%U 1,1,2,1,4,4,5,9,1,1,0,5,0,0,0,6,7,5,7,8,6,6,7,9,9,5,3,6,6,4,2,0,8,8
%N Decimal expansion of the Dirichlet beta function of 7.
%H G. C. Greubel, <a href="/A258814/b258814.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>.
%F beta(7) = Sum_{n>=0} (-1)^n/(2n+1)^7 = (zeta(7, 1/4) - zeta(7, 3/4))/16384 = 61*Pi^7/184320.
%F Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^7)^(-1). - _Amiram Eldar_, Nov 06 2023
%e 0.9995545078905399094963465498990589830021884819499757922526492189419...
%t RealDigits[DirichletBeta[7], 10, 102] // First
%o (PARI) 61*Pi^7/184320 \\ _Charles R Greathouse IV_, Dec 06 2016
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 61*Pi(R)^7/184320; // _G. C. Greubel_, Aug 24 2018
%Y Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258815 (beta(8)), A258816 (beta(9)).
%K nonn,cons,easy
%O 0,1
%A _Jean-François Alcover_, Jun 11 2015