login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^11 - 1.
1

%I #14 Sep 08 2022 08:46:12

%S 0,2047,177146,4194303,48828124,362797055,1977326742,8589934591,

%T 31381059608,99999999999,285311670610,743008370687,1792160394036,

%U 4049565169663,8649755859374,17592186044415,34271896307632,64268410079231,116490258898218,204799999999999

%N a(n) = n^11 - 1.

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).

%F G.f.: x^2* (2047 + 152582*x + 2203653*x^2 + 9737784*x^3 + 15724710*x^4 + 9737652*x^5 + 2203818*x^6 + 152472*x^7 + 2091*x^8 - 10*x^9 + x^10) / (1 - x)^12.

%F a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).

%F a(n) = -A024009(n). [_Bruno Berselli_, Jun 12 2015]

%t Table[n^11 - 1, {n, 33}] (* or *) LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {0, 2047, 177146, 4194303, 48828124, 362797055, 1977326742, 8589934591, 31381059608, 99999999999, 285311670610, 743008370687}, 40]

%o (Magma) [n^11-1: n in [1..40]];

%Y Cf. A024009.

%Y Cf. similar sequences listed in A258807.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Jun 11 2015