Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #27 Jun 22 2015 00:16:24
%S 2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5,2,3,2,2,2,2,2,2,2,2,6,
%T 2,2,2,2,2,2,2,2,2,2,2,2,7,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,10,2,2,2,2,2,2,2,6,2,2,2,2,2,2,2,2,2,2,2,2,11,2,2,2,5,2,2,2,2,2,2
%N For 1 < k <= n, let m be the largest number such that k^1, k^2, ... k^m are palindromes in base n. a(n) gives the smallest k which has the largest value of m.
%C Excluding repetitions, this is a permutation of the natural numbers excluding all perfect powers (i.e., this sequence contains N if and only if N is in A007916). - _Derek Orr_, Jun 18 2015
%H Christian Perfect, <a href="/A258757/b258757.txt">Table of n, a(n) for n = 2..1000</a>
%e a(8) = 3 because the first 6 powers of 3 are palindromes in base 8, which is more than any other number in the range 2..8 (here, m = 6).
%o (Python)
%o def to_base(n,b):
%o ...s = []
%o ...while n:
%o ......m = n%b
%o ......s = [m]+s
%o ......n = (n-m)//b
%o ...return s
%o .
%o def is_palindrome(n):
%o ...return n==n[::-1]
%o .
%o def num_palindromes(n,b):
%o ...if n<2:
%o ......return 0
%o ...t = 1
%o ...while is_palindrome(to_base(n**t,b)):
%o ......t+=1
%o ...return t-1
%o .
%o def most_palindromes(b):
%o ...return max(range(2,b+1),key=lambda n:num_palindromes(n,b))
%o (PARI) a(n)=v=[-1];for(k=2,n,i=1;c=0;while(i,d=digits(k^i,n);if(Vecrev(d)==d,c++);if(Vecrev(d)!=d,break);i++);if(c>v[#v],v=concat(v,c);m=k));m
%o vector(100,n,a(n+1)) \\ _Derek Orr_, Jun 18 2015
%Y Cf. A007916.
%K nonn,base
%O 2,1
%A _Christian Perfect_, Jun 09 2015