Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 26 2024 13:26:17
%S 2,4,2,2,6,5,5,8,3,7,8,8,3,4,7,8,1,7,1,6,6,3,3,6,8,7,0,4,5,1,0,5,3,1,
%T 8,8,4,6,3,5,7,1,3,9,2,7,4,7,2,2,6,0,3,4,1,8,8,1,8,1,5,1,7,9,1,8,2,6,
%U 9,3,6,8,7,7,2,4,4,4,4,3,6,0,5,1,2,4,5,2,7,1,2,0,8,1,9,1,5,5,2,4,6,5,6,9,6
%N Decimal expansion of Ls_5(Pi), the value of the 5th basic generalized log-sine integral at Pi (negated).
%H Jonathan M. Borwein, Armin Straub, <a href="https://carmamaths.org/resources/jon/logsin3.pdf">Special Values of Generalized Log-sine Integrals</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F -Integral_{0..Pi} log(2*sin(t/2))^4 dx = -19*Pi^5/240.
%F Also equals 4th derivative of -Pi*binomial(x, x/2) at x=0.
%e -24.22655837883478171663368704510531884635713927472260341881815179...
%t RealDigits[-19*Pi^5/240, 10, 105] // First
%o (PARI) -19*Pi^5/240 \\ _Charles R Greathouse IV_, Nov 26 2024
%Y Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
%K nonn,cons,easy
%O 2,1
%A _Jean-François Alcover_, Jun 09 2015