login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of self-dual noncommutative groupoids with n elements.
9

%I #8 May 06 2023 17:24:11

%S 0,0,9,16192,198862625,42002510818752,207278622607612079818,

%T 29215384735442091573649485568,

%U 137562588659577384442574662095693261747,24724406349174154904254665510689036571978910174560

%N Number of self-dual noncommutative groupoids with n elements.

%H N. J. A. Sloane, <a href="/A001329/a001329.jpg">Overview of A001329, A001423-A001428, A258719, A258720.</a>

%H T. Tamura, <a href="/A001329/a001329.pdf">Some contributions of computation to semigroups and groupoids</a>, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)

%F a(n) = A029850(n) - A001425(n). - _Andrew Howroyd_, May 06 2023

%Y Cf. A029850, A001425, A258720.

%K nonn,more

%O 1,3

%A _N. J. A. Sloane_, Jun 18 2015

%E a(5)-a(10) from _Andrew Howroyd_, May 06 2023