login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258692
Integers n such that n*(n + 2)*(n + 4) + 1 is a perfect square.
1
-4, -3, -2, 0, 1, 2, 8, 10, 18, 112, 1272
OFFSET
1,1
COMMENTS
This sequence is finite as there are finitely many integer solutions to the elliptic curve y^2 = x(x + 2)(x + 4) + 1 = x^3 + 6x^2 + 8x + 1. The x values of the integer solutions are {-4, -3, -2, 0, 1, 2, 8, 10, 18, 112, 1272}. This equation has more integer and natural number solutions than the equation that defines sequence A121234.
EXAMPLE
1 * 3 * 5 + 1 = 16 = 4^2, so 4 is in the sequence.
2 * 4 * 6 + 1 = 49 = 7^2, so 2 is in the sequence.
3 * 5 * 7 + 1 = 106 = 2 * 53, so 3 is not in the sequence.
MATHEMATICA
Select[Range[-10, 100], IntegerQ[Sqrt[#(# + 2)(# + 4) + 1]] &] (* Alonso del Arte, Jun 12 2015 *)
PROG
(Magma) P<n> := PolynomialRing(Integers()); {x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve(n^3 + 6*n^2 + 8*n + 1)) ])};
(SageMath) [i[0] for i in EllipticCurve([0, 6, 0, 8, 1]).integral_points()] # Seiichi Manyama, Aug 26 2019
CROSSREFS
Cf. A121234.
Sequence in context: A176863 A349989 A067017 * A067018 A200233 A373750
KEYWORD
sign,fini,full
AUTHOR
Morris Neene, Jun 12 2015
STATUS
approved