login
A258684
a(n) = A041105(4n+1).
2
1, 63, 3905, 242047, 15003009, 929944511, 57641556673, 3572846569215, 221458845734657, 13726875588979519, 850844827670995521, 52738652440012742783, 3268945606453119057025, 202621888947653368792767, 12559288169148055746094529, 778473244598231802889068031
OFFSET
0,2
FORMULA
a(n) = (1/2-2/sqrt(15))*(31-8*sqrt(15))^n+((15+4*sqrt(15))*(31+8*sqrt(15))^n)/30.
a(n) = 62*a(n-1)-a(n-2). - Colin Barker, Jun 07 2015
G.f.: (x+1) / (x^2-62*x+1). - Colin Barker, Jun 07 2015
MATHEMATICA
a[c_, p_, n_] := Module[{},
l := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n l]] ;
t := Table[d[[i + 1]], {i, p, Length[d] - 1, l}] ;
Return[t];
];
a[60, 1, 20]
CoefficientList[Series[(1 + x)/(x^2 - 62 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 08 2015 *)
LinearRecurrence[{62, -1}, {1, 63}, 30] (* Harvey P. Dale, Dec 24 2015 *)
PROG
(PARI) Vec((x+1)/(x^2-62*x+1) + O(x^100)) \\ Colin Barker, Jun 07 2015
(Magma) I:=[1, 63]; [n le 2 select I[n] else 62*Self(n-1)-Self(n-2): n in [1..45]]; // Vincenzo Librandi, Jun 08 2015
CROSSREFS
Cf. A041105 (denominators of continued fraction convergents to sqrt(60)).
Sequence in context: A069381 A051589 A203457 * A180926 A267963 A268028
KEYWORD
nonn,easy,frac
AUTHOR
Gerry Martens, Jun 07 2015
STATUS
approved