Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #71 Sep 03 2023 23:40:11
%S 0,0,0,0,4,20,117,791,6204,55004,543595,5922925,70518884,910711076,
%T 12678337153,189252394275,3015217877068,51067618521276,
%U 916176420499159,17355904074255065,346195849623668420,7252654428822549364,159210363264445218829,3654550887654460566191
%N A total of n married couples, including a mathematician M and his wife, are to be seated at the 2n chairs around a circular table, with no man seated next to his wife. After the ladies are seated at every other chair, M is the first man allowed to choose one of the remaining chairs. The sequence gives the number of ways of seating the other men, with no man seated next to his wife, if M chooses the chair that is 7 seats clockwise from his wife's chair.
%C This is a variation of the classic ménage problem (cf. A000179).
%C It is known [Riordan, ch. 8, ex. 7(b)] that, after the ladies are seated at every other chair, the number U_n of ways of seating the men in the ménage problem has asymptotic expansion U_n ~ e^(-2)*n!*(1 + Sum_{k>=1} (-1)^k/(k!(n-1)_k)), where (n)_k = n*(n-1)*...*(n-k+1).
%C Therefore, it is natural to conjecture that a(n) ~ e^(-2)*n!/(n-2)*(1 + Sum_{k>=1} (-1)^k/(k!(n-1)_k)).
%D I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124.
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, chs. 7, 8.
%H Peter J. C. Moses, <a href="/A258666/a258666_1.pdf">Seatings for 5 couples</a>
%H I. Kaplansky and J. Riordan, <a href="/A000166/a000166_1.pdf">The problème des ménages</a>, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
%H E. Lucas, <a href="https://archive.org/details/thoriedesnombre00lucagoog/page/n495">Sur le problème des ménages</a>, Théorie des nombres, Paris, 1891, 491-496.
%H Vladimir Shevelev, Peter J. C. Moses, <a href="http://arxiv.org/abs/1101.5321">The ménage problem with a known mathematician</a>, arXiv:1101.5321 [math.CO], 2011-2015.
%H Vladimir Shevelev and Peter J. C. Moses, <a href="http://www.emis.de/journals/INTEGERS/papers/q72/q72.Abstract.html">Alice and Bob go to dinner: A variation on menage</a>, INTEGERS, Vol. 16(2016), #A72.
%H J. Touchard, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k31506/f631.image">Sur un problème de permutations</a>, C.R. Acad. Sci. Paris, 198 (1934), 631-633.
%F a(n)=0 for n <= 4; for n >= 5, a(n) = Sum_{k=0..n-1} (-1)^k*(n-k-1)! Sum_{j=max(k-n+4, 0)..min(k,3)} binomial(6-j, j)*binomial(2*n-k+j-8, k-j).
%t a[n_] := If[n<5, 0, Sum[(-1)^k (n-k-1)! Sum[Binomial[6-j, j] Binomial[2n-k+j-8, k-j], {j, Max[k-n+4, 0], Min[k, 3]}], {k, 0, n-1}]];
%t Array[a, 24] (* _Jean-François Alcover_, Sep 19 2018 *)
%o (PARI) vector(30, n, if (n<=4, 0, sum(k=0,n-1,(-1)^k*(n-k-1)!*sum(j=max(k-n+4, 0),min(k,3), binomial(6-j, j)*binomial(2*n-k+j-8, k-j))))) \\ _Michel Marcus_, Jun 17 2015
%Y Cf. A000179, A258664, A258665, A258667, A258673, A259212.
%K nonn
%O 1,5
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 07 2015