OFFSET
1,5
COMMENTS
(Z/nZ)* represents the multiplicative group of units mod n and this sequence gives the number of automorphisms of (Z/nZ)*.
A formula for this sequence can be found in the Hillar and Rhea reference.
Or equivalently, a(n) is the order of Aut(Aut(C_n)), where C_n is the cyclic group of order n. - Jianing Song, Apr 06 2019
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..10000 (terms 1..500 from Dominic Milioto)
C. J. Hillar and D. Rhea, Automorphisms of finite abelian groups
C. J. Hillar and D. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
Dominic Milioto, The size of an Automorphism Group, Wolfram Demonstrations Project.
Jianing Song, Structure and SmallGroupId of Aut((Z/nZ)*) for n <= 200
Wikipedia, Multiplicative group of integers modulo n
FORMULA
EXAMPLE
|Aut((Z/1Z)*)|=1. |Aut(Z/28Z)*| = 12.
(Z/5Z)* is isomorphic to Z/4Z, which has two automorphisms, so a(5) = 2. - Tom Edgar, Jun 05 2015
PROG
(PARI)
zp(g)={sum(i=1, #g, my(f=factor(g[i])); sum(j=1, #f~, x^f[j, 1]*y^f[j, 2]))}
aut(p, q)={my(s=0, d=0, m=1); forstep(i=poldegree(q), 1, -1, my(c=polcoeff(q, i)); if(c, s+=i*c*d + (i-1)*c*(d+c); m*=prod(i=1, c, p^i-1); d+=c)); s+=d*(d-1)/2; m*p^s}
a(n)={my(p=zp(znstar(n).cyc)); prod(i=1, poldegree(p), aut(i, polcoeff(p, i)))} \\ Andrew Howroyd, Jun 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Dominic Milioto, Jun 05 2015
STATUS
approved