login
A258566
Triangle in which n-th row contains all possible products of n-1 of the first n primes in descending order.
3
1, 3, 2, 15, 10, 6, 105, 70, 42, 30, 1155, 770, 462, 330, 210, 15015, 10010, 6006, 4290, 2730, 2310, 255255, 170170, 102102, 72930, 46410, 39270, 30030, 4849845, 3233230, 1939938, 1385670, 881790, 746130, 570570, 510510
OFFSET
1,2
COMMENTS
Triangle read by rows, truncated rows of the array in A185973.
Reversal of A077011.
FORMULA
T(1,1) = 1, T(n,k) = A000040(n)*T(n-1,k) for k < n, T(n,n) = A000040(n-1) * T(n-1,n-1).
EXAMPLE
Triangle begins:
1;
3, 2;
15, 10, 6;
105, 70, 42, 30;
1155, 770, 462, 330, 210;
15015, 10010, 6006, 4290, 2730, 2310;
...
MAPLE
T:= n-> (m-> seq(m/ithprime(j), j=1..n))(mul(ithprime(i), i=1..n)):
seq(T(n), n=1..10); # Alois P. Heinz, Jun 18 2015
MATHEMATICA
T[1, 1] = 1; T[n_, n_] := T[n, n] = Prime[n-1]*T[n-1, n-1];
T[n_, k_] := T[n, k] = Prime[n]*T[n-1, k];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
CROSSREFS
Row sums: A024451.
T(n,1) = A070826(n).
T(n,n) = A002110(n-1).
For 2 <= n <= 9, T(n,2) = A118752(n-2). [corrected by Peter Munn, Jan 13 2018]
T(n,k) = A121281(n,k), but the latter has an extra column (0).
Sequence in context: A218969 A345291 A185973 * A374667 A051917 A302845
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jun 03 2015
STATUS
approved