login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258544 Number of (n+2)X(7+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum equal to the central column sum 1
234848, 682276, 956736, 2414916, 3826716, 8773444, 15444224, 34739236, 68785192, 159314884, 350720544, 846460836, 2012239968, 5024257924, 12517516032, 31952992516, 81660135036, 211086951364, 546410190784, 1421755755876 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 7 of A258545

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..156

FORMULA

Empirical: a(n) = 3*a(n-1) +13*a(n-2) -42*a(n-3) -71*a(n-4) +255*a(n-5) +210*a(n-6) -885*a(n-7) -355*a(n-8) +1950*a(n-9) +305*a(n-10) -2865*a(n-11) +2865*a(n-13) -305*a(n-14) -1950*a(n-15) +355*a(n-16) +885*a(n-17) -210*a(n-18) -255*a(n-19) +71*a(n-20) +42*a(n-21) -13*a(n-22) -3*a(n-23) +a(n-24) for n>27

EXAMPLE

Some solutions for n=1

..0..1..0..1..0..0..1..1..1....0..0..0..0..0..0..0..0..0

..0..1..0..1..1..0..1..1..0....0..1..1..1..1..1..1..1..1

..0..0..0..1..0..0..1..1..1....0..0..0..0..1..1..1..1..1

CROSSREFS

Cf. A258545

Sequence in context: A013905 A237239 A216056 * A249529 A132905 A100780

Adjacent sequences:  A258541 A258542 A258543 * A258545 A258546 A258547

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jun 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:08 EST 2018. Contains 318148 sequences. (Running on oeis4.)