login
Number of (n+2)X(6+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum equal to the central column sum
1

%I #4 Jun 02 2015 10:08:03

%S 77284,241081,381924,996004,1784896,4359744,8773444,21372129,47499664,

%T 118113424,282307204,717007729,1791151684,4613533929,11803953316,

%U 30651955929,79385316516,207027730009,539328672100,1409439091204

%N Number of (n+2)X(6+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum equal to the central column sum

%C Column 6 of A258545

%H R. H. Hardin, <a href="/A258543/b258543.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) -9*a(n-2) -47*a(n-3) +153*a(n-4) -3*a(n-5) -629*a(n-6) +803*a(n-7) +883*a(n-8) -2747*a(n-9) +429*a(n-10) +4337*a(n-11) -2509*a(n-12) -5093*a(n-13) +3563*a(n-14) +7901*a(n-15) -6747*a(n-16) -11015*a(n-17) +13439*a(n-18) +9079*a(n-19) -16793*a(n-20) -6255*a(n-21) +16569*a(n-22) +6893*a(n-23) -19123*a(n-24) -4763*a(n-25) +20341*a(n-26) -477*a(n-27) -15813*a(n-28) +2087*a(n-29) +11281*a(n-30) -1447*a(n-31) -8951*a(n-32) +2143*a(n-33) +5847*a(n-34) -2461*a(n-35) -2623*a(n-36) +1465*a(n-37) +1001*a(n-38) -529*a(n-39) -441*a(n-40) +163*a(n-41) +165*a(n-42) -51*a(n-43) -35*a(n-44) +11*a(n-45) +3*a(n-46) -a(n-47) for n>49

%e Some solutions for n=1

%e ..1..1..1..1..1..0..1..0....1..0..1..0..1..1..0..0....1..1..0..0..1..0..1..0

%e ..1..0..1..0..0..0..1..0....0..1..1..0..0..1..0..1....1..1..1..0..1..1..0..0

%e ..0..0..0..1..1..0..1..0....1..0..1..0..1..1..1..0....1..0..0..0..1..0..1..1

%Y Cf. A258545

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 02 2015