login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2n-length strings of balanced parentheses of exactly 2 different types that are introduced in ascending order.
2

%I #8 Jun 01 2015 05:51:01

%S 2,15,98,630,4092,27027,181610,1239810,8582756,60138078,425800564,

%T 3042175500,21906338040,158830645635,1158564772890,8496271312650,

%U 62604582047700,463275674416170,3441483002640540,25654715940496500,191852749820189640,1438895966711035950

%N Number of 2n-length strings of balanced parentheses of exactly 2 different types that are introduced in ascending order.

%H Alois P. Heinz, <a href="/A258390/b258390.txt">Table of n, a(n) for n = 2..1000</a>

%F a(n) = (2*n-1)*(6*n*a(n-1)-8*(2*n-3)*a(n-2))/(n*(n+1)) for n>2, a(2)=2, a(n)=0 for n<2.

%F a(n) = (2^(n-1)-1) * binomial(2n,n)/(n+1) = (2^(n-1)-1)*A000108(n). - _Vaclav Kotesovec_, Jun 01 2015

%p a:= proc(n) option remember; `if`(n<3, [0$2, 2][n+1],

%p (2*n-1)*(6*n*a(n-1) -8*(2*n-3)*a(n-2))/(n*(n+1)))

%p end:

%p seq(a(n), n=2..25);

%t Table[(2^(n-1)-1)*Binomial[2n,n]/(n+1),{n,2,20}] (* _Vaclav Kotesovec_, Jun 01 2015 *)

%Y Column k=2 of A253180.

%K nonn

%O 2,1

%A _Alois P. Heinz_, May 28 2015