Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:46:12
%S 0,8,648,82944,16000000,4374000000,1613775332736,773738492592128,
%T 467988280328060928,348678440100000000000,313842837672100000000000,
%U 335790511878017502425382912,421272520289832237611045879808,612530145817540311016457192308736
%N a(n) = n^(n+1) * (n-1)^n.
%H Daniel Suteu, <a href="/A258385/b258385.txt">Table of n, a(n) for n = 1..20</a>
%F a(n) ~ 1/e * n^(2n+1). - _Charles R Greathouse IV_, May 28 2015
%F a(n) = A007778(n)*A007778(n-1). - _Michel Marcus_, Jul 07 2015
%e For n=3, a(3) = 3^(3+1) * (3-1)^3 = 3^4 * 2^3 = 81 * 8 = 648.
%t Array[#^(# + 1) (# - 1)^# &, 20] (* _Vincenzo Librandi_, May 29 2015 *)
%o (Sidef)
%o func a(n) {
%o (n-1)**n * n**(n+1);
%o };
%o 1.to(Math.inf).each { |n|
%o say a(n);
%o };
%o (PARI) a(n)=n^(n+1)*(n-1)^n \\ _Charles R Greathouse IV_, May 28 2015
%o (Magma) [n^(n+1) * (n-1)^n: n in [1..20]]; // _Vincenzo Librandi_, May 29 2015
%Y Cf. A007778 (n^(n+1)).
%K nonn,easy
%O 1,2
%A _Daniel Suteu_, May 28 2015
%E More terms from _Vincenzo Librandi_, May 29 2015