login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).
9

%I #7 Nov 11 2020 09:01:14

%S 1,0,0,1,4,10,21,39,76,145,294,581,1169,2276,4435,8494,16237,30768,

%T 58221,109466,205223,382658,710808,1314091,2420437,4439753,8115645,

%U 14781062,26833241,48550863,87575527,157480827,282362462,504819198,900058558,1600424247

%N Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).

%H Vaclav Kotesovec, <a href="/A258352/b258352.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 + Zeta(3)/(8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2/(90*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5 * Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

%t nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]

%o (SageMath) # uses[EulerTransform from A166861]

%o b = EulerTransform(lambda n: binomial(n, 3))

%o print([b(n) for n in range(37)]) # _Peter Luschny_, Nov 11 2020

%Y Cf. A000335, A023872, A258346, A258347, A258348, A258349, A258350, A258351.

%K nonn

%O 0,5

%A _Vaclav Kotesovec_, May 27 2015