Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 28 2015 03:37:48
%S 1,0,0,6,24,60,135,354,972,2684,6990,17802,44627,111582,277329,684164,
%T 1671984,4050096,9735209,23238480,55120950,129940442,304502583,
%U 709464798,1643920584,3789158988,8690016942,19833550266,45056952957,101900481462,229462378987
%N Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)).
%H Vaclav Kotesovec, <a href="/A258345/b258345.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) ~ 3^(1/5) * Zeta(5)^(1/10) / (2^(91/120) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1749600000000*Zeta(5)^3) + 49 * Pi^8 * Zeta(3) / (2700000 * Zeta(5)^2) - Zeta(3)^2 / (25*Zeta(5)) + (-343 * Pi^12 / (405000000 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (750 * 2^(4/5) * 3^(2/5) * 5^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (180000 * 2^(3/5) * 3^(4/5) * 5^(2/5) * Zeta(5)^(7/5)) + 3^(1/5) * Zeta(3) / (2^(3/5) * (5*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(2/5) * 3^(1/5) * (5*Zeta(5))^(3/5)) * n^(3/5) + 5*3^(2/5) * ((5*Zeta(5))/2)^(1/5)/4 * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.
%t nmax=40; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x]
%Y Cf. A248882, A028377, A258341, A258342, A258343, A258344, A258346, A258351.
%K nonn
%O 0,4
%A _Vaclav Kotesovec_, May 27 2015