login
A258281
Number of partitions of 3 copies of n into distinct parts.
2
1, 1, 4, 5, 13, 18, 37, 56, 103, 154, 279, 398, 682, 1027, 1664, 2433, 3977, 5755, 8957, 13173, 19980, 29002, 43894, 62562, 92531, 133550, 193348, 274049, 398218, 558839, 796906, 1120833, 1577874, 2197279, 3089063, 4258348, 5915878, 8170572, 11231601, 15355764
OFFSET
5,3
LINKS
FORMULA
a(n) = 1/6 * [(x*y*z)^n] Product_{j>0} (1+x^j+y^j+z^j).
EXAMPLE
a(7) = 4: [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3].
MATHEMATICA
nmax = 30; p = 1; Do[p = Expand[p*(1 + x^j + y^j + z^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) && (Exponent[#, z] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] == Exponent[#, z] &]; Table[Coefficient[p, x^n*y^n*z^n]/6, {n, 5, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
CROSSREFS
Column k=3 of A258280.
Sequence in context: A091183 A372122 A234254 * A094029 A005672 A147001
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 25 2015
STATUS
approved