login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258247
Irregular triangle (Beatty tree for sqrt(8)) as determined in Comments; a permutation of the nonnegative integers.
2
0, 2, 1, 8, 3, 5, 25, 11, 16, 9, 73, 4, 6, 28, 33, 48, 26, 209, 19, 10, 12, 14, 17, 76, 82, 96, 138, 74, 593, 7, 36, 42, 50, 56, 27, 29, 31, 34, 49, 212, 217, 234, 274, 393, 210, 1680, 13, 15, 18, 20, 22, 84, 90, 98, 104, 121, 144, 161, 75, 77, 79, 83, 97
OFFSET
1,2
COMMENTS
The Beatty tree for an irrational number r > 1 (such as r = sqrt(8)), is formed as follows. To begin, let s = r/(r-1), so that the sequences defined u and v defined by u(n) = floor(r*n) and v(n) = floor(s*n), for n >=1 are the Beatty sequences of r and s, and u and v partition the positive integers.
The tree T has root 0 with an edge to 2, and all other edges are determined as follows: if x is in u(v), then there is an edge from x to floor(r + r*x) and an edge from x to ceiling(x/r); otherwise there is an edge from x to floor(r + r*x). (Thus, the only branchpoints are the numbers in u(v).)
Another way to form T is by "backtracking" to the root 0. Let b(x) = floor[x/r] if x is in (u(n)), and b(x) = floor[r*x] if x is in (v(n)). Starting at any vertex x, repeated applications of b eventually reach 0. The number of steps to reach 0 is the number of the generation of T that contains x. (See Example for x = 13).
See A258212 for a guide to Beatty trees for various choices of r.
EXAMPLE
Rows (or generations, or levels) of T:
0
2
1 8
3 5 25
11 16 9 73
4 6 28 33 48 26 209
19 10 12 14 16 76 82 96 138 74 593
Generations 0 to 8 of the tree are drawn by the Mathematica program. In T, the path from 0 to 13 is (0,2,8,3,11,33,12,36,13). The path obtained by backtracking (i.e., successive applications of the mapping b in Comments) is (13,36,12,33,11,3,8,2,0).
MATHEMATICA
r = Sqrt[8]; k = 2000; w = Map[Floor[r #] &, Range[k]];
f[x_] := f[x] = If[MemberQ[w, x], Floor[x/r], Floor[r*x]];
b := NestWhileList[f, #, ! # == 0 &] &;
bs = Map[Reverse, Table[b[n], {n, 0, k}]];
generations = Table[DeleteDuplicates[Map[#[[n]] &, Select[bs, Length[#] > n - 1 &]]], {n, 9}]
paths = Sort[Map[Reverse[b[#]] &, Last[generations]]]
graph = DeleteDuplicates[Flatten[Map[Thread[Most[#] -> Rest[#]] &, paths]]]
TreePlot[graph, Top, 0, VertexLabeling -> True, ImageSize -> 900]
Map[DeleteDuplicates, Transpose[paths]] (* Peter J. C. Moses, May 21 2015 *)
CROSSREFS
Cf. A022842, A258248 (path-length, 0 to n), A258212.
Sequence in context: A334474 A346453 A258243 * A085470 A200584 A099379
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Jun 08 2015
STATUS
approved