login
A258193
Define a<+>b = odd part(odd part(a) + odd part(b)), where odd part(n) = A000265(n); a(n) is the smallest prime of the form <+>_{0<=i<=k} binomial (n,i), or a(n)=0 if there is no such a prime (see comment).
3
0, 0, 0, 0, 3, 3, 11, 0, 5, 3, 3, 17, 7, 23, 53, 29, 13, 5, 5, 3, 11, 3, 3, 823, 13, 7, 7, 457, 109, 109, 233, 2267, 17, 59, 151, 5, 19, 5, 5, 3, 113, 11, 11, 3, 23, 3, 3, 71, 43, 13, 13, 7, 179, 7, 7, 193, 29, 2137, 863, 443, 31, 5498157739, 977, 163
OFFSET
1,5
COMMENTS
f(n)=<+>_{0<=i<=n} c(i) is defined as the following: f(0)=c(0), f(n)=f(n-1)<+>c(n).
a(n)=0 for 1,2,3,4,8,82,107,...(cf. A258194)
LINKS
MATHEMATICA
vSum[a_, b_]:=#[#[a]+#[b]]&[#/2^IntegerExponent[#, 2]&];
Table[
First[Select[FoldList[vSum, First[#], Rest[#]]&[Map[Binomial[n, #]&, Range[0, n]]], PrimeQ]/.{}->{0}], {n, 100}] (*Peter J. C. Moses, May 23 2015*)
PROG
(Haskell)
import Data.Function (on)
a258193 n = head $ (filter ((== 1) . a010051'') $
scanl1 (<+>) (a034868_row n)) ++ [0]
where (<+>) = (a000265 .) . on (+) a000265
-- Reinhard Zumkeller, Jun 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 23 2015
EXTENSIONS
More terms from Peter J. C. Moses, May 23 2015
STATUS
approved