Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 14 2020 16:37:27
%S 1,2,5,10,11,17,22,23,31,34,41,46,47,55,59,62,67,73,82,83,85,94,97,
%T 103,109,110,115,118,127,134,137,146,149,155,157,166,167,170,179,187,
%U 191,194,197,205,206,211,218,227,230,233,235,241,253,254,257,269,274,277,283,295,298,307,310,313,314,331,334,335,341,347
%N The Heinz numbers in increasing order of the partitions into distinct odd parts.
%C We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, the Heinz number of the partition [1, 1, 2, 4, 10] is 2*2*3*7*29 = 2436.
%C In the Maple program the subprogram B yields the partition with Heinz number n.
%C More terms are obtained if one replaces the 350 in the Maple program by a larger number.
%D G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
%D G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
%H Alois P. Heinz, <a href="/A258116/b258116.txt">Table of n, a(n) for n = 1..10000</a>
%e 170 is in the sequence because it is the Heinz number of the partition [1,3,7]; indeed, (1st prime)*(3rd prime)*(7th prime) = 2*5*17 = 170.
%p with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DO := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), odd) = {true}) then DO := `union`(DO, {q}) else end if end do: DO;
%p # second Maple program:
%p a:= proc(n) option remember; local k;
%p for k from 1+`if`(n=1, 0, a(n-1)) do
%p if not false in map(i-> i[2]=1 and numtheory
%p [pi](i[1])::odd, ifactors(k)[2]) then break fi
%p od; k
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, May 10 2016
%t a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n-1]], True, k++, If[AllTrue[FactorInteger[k], #[[2]] == 1 && OddQ[PrimePi[#[[1]]]]&], Break[]]]; k]; Join[{1}, Array[a, 100]] (* _Jean-François Alcover_, Dec 10 2016 after _Alois P. Heinz_ *)
%Y Cf. A215366, A258117.
%K nonn
%O 1,2
%A _Emeric Deutsch_, May 20 2015
%E a(1)=1 inserted by _Alois P. Heinz_, May 10 2016