Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jun 17 2024 07:14:55
%S 0,0,1,0,0,1,1,0,2,0,0,1,1,1,1,0,0,2,1,0,2,0,0,1,0,1,3,1,1,1,0,0,1,0,
%T 1,2,1,1,2,0,0,2,1,0,2,0,0,1,2,0,1,1,1,3,0,1,2,1,0,1,1,0,3,0,1,1,0,0,
%U 1,1,1,2,0,1,1,1,1,2,1,0,4,0,0,2,0,1,2
%N Number of even parts in the partition having Heinz number n.
%C We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
%C In the Maple program the subprogram B yields the partition with Heinz number n.
%D George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
%D Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
%H Alois P. Heinz, <a href="/A257992/b257992.txt">Table of n, a(n) for n = 1..20000</a>
%F From _Amiram Eldar_, Jun 17 2024: (Start)
%F Totally additive with a(p) = 1 if primepi(p) is even, and 0 otherwise.
%F a(n) = A257991(n) - A195017(n). (End)
%e a(18) = 2 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having 2 even parts.
%p with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 135);
%p # second Maple program:
%p a:= n-> add(`if`(numtheory[pi](i[1])::even, i[2], 0), i=ifactors(n)[2]):
%p seq(a(n), n=1..120); # _Alois P. Heinz_, May 09 2016
%t a[n_] := Sum[If[PrimePi[i[[1]]] // EvenQ, i[[2]], 0], {i, FactorInteger[n]} ]; a[1] = 0; Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Dec 10 2016 after _Alois P. Heinz_ *)
%Y Cf. A001222, A195017, A215366, A257991.
%K nonn
%O 1,9
%A _Emeric Deutsch_, May 18 2015