Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Jun 08 2015 12:04:08
%S 0,2,1,4,8,3,9,5,10,7,14,6,15,13,21,11,22,16,26,12,24,17,30,18,32,19,
%T 34,23,39,20,37,28,46,25,44,27,47,29,50,35,57,31,54,38,62,33,58,36,63,
%U 40,66,41,69,42,71,43,73,49,80,45,77,110,48,82,51,86,52
%N Sequence (a(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 1.
%C Algorithm: For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
%C Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
%C See A257883 for a guide to related sequences.
%H Clark Kimberling, <a href="/A257884/b257884.txt">Table of n, a(n) for n = 1..1000</a>
%F a(k+1) - a(k) = d(k+1) for k >= 1.
%e a(1) = 0, d(1) = 1;
%e a(2) = 2, d(2) = 2;
%e a(3) = 1, d(3) = -1;
%e a(4) = 4, d(4) = 3.
%t a[1] = 0; d[1] = 1; k = 1; z = 10000; zz = 120;
%t A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
%t c[k_] := Complement[Range[-z, z], diff[k]];
%t T[k_] := -a[k] + Complement[Range[z], A[k]]
%t Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,
%t d[k + 1] = h, k = k + 1}, {i, 1, zz}];
%t u = Table[a[k], {k, 1, zz}] (* A257884 *)
%t Table[d[k], {k, 1, zz}] (* A175499 *)
%Y Cf. A257883, A175498, A257705, A081145.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, May 13 2015