Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 28 2023 10:16:19
%S 6,9,1,3,0,3,9,5,7,7,0,0,9,1,6,1,1,0,7,8,5,0,1,8,7,8,1,4,2,6,9,7,7,9,
%T 1,2,3,0,2,1,0,0,8,9,5,0,6,9,1,5,9,4,3,2,7,1,3,9,7,9,8,3,2,9,8,2,7,1,
%U 8,9,0,5,2,7,2,9,5,2,7,5,9,6,8,2,3,2,9,4,6,9,1,1,5,5,7,3,2,7,1,9,6,1,1,2
%N Decimal expansion of the Madelung type constant C(2|1/2) (negated).
%H G. C. Greubel, <a href="/A257871/b257871.txt">Table of n, a(n) for n = 1..5000</a>
%H Hassan Chamati and Nicholay S. Tonchev, <a href="http://arxiv.org/abs/cond-mat/0003235">Exact results for some Madelung type constants in the finite-size scaling theory</a>, arXiv:cond-mat/0003235 [cond-mat.stat-mech], 2000.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MadelungConstants.html">Madelung Constants</a>
%F Equals 2*sqrt(Pi)*zeta(1/2)*(zeta(1/2, 1/4) - zeta(1/2, 3/4)).
%F Equals 4*Pi^(1 - 2*nu)*gamma(nu)*zeta(nu)*DirichletBeta(nu) with nu = 1/2.
%e -6.913039577009161107850187814269779123021008950691594327139798329827...
%p evalf(2*sqrt(Pi)*Zeta(1/2)*(Zeta(0, 1/2, 1/4)-Zeta(0, 1/2, 3/4)), 120); # _Vaclav Kotesovec_, May 11 2015
%t RealDigits[2*Sqrt[Pi]*Zeta[1/2]*(Zeta[1/2, 1/4] - Zeta[1/2, 3/4]), 10, 104] // First
%o (PARI) 2*sqrt(Pi)*zeta(1/2)*(zetahurwitz(1/2, 1/4) - zetahurwitz(1/2, 3/4)) \\ _Charles R Greathouse IV_, Jan 31 2018
%Y Cf. A257870, A257872.
%K nonn,cons,easy
%O 1,1
%A _Jean-François Alcover_, May 11 2015