%I #15 Nov 29 2015 21:30:58
%S 0,1,27,376,13131,234595324075,54377519037479592374299,
%T 8326623359858152426050700,1513868951125582592290131113769528
%N Numbers n such that the square root of the sum of the digits times the sum of the digits of n in some power equal n.
%C It appears that this sequence is finite.
%e 376 = sqrt(3+7+6)*(3^2+7^2+6^2).
%e 13131 = sqrt(1+3+1+3+1)*(1^7+3^7+1^7+3^7+1^7).
%o (Python)
%o def moda(n,a):
%o ....kk = 0
%o ....while n > 0:
%o ........kk= kk+(n%10)**a
%o ........n =int(n//10)
%o ....return kk
%o def sod(n):
%o ....kk = 0
%o ....while n > 0:
%o ........k= kk+(n%10)
%o ........n =int(n//10)
%o ....return kk
%o for a in range (1, 10):
%o for c in range (1, 10**8):
%o if c**2==sod(c)*moda(c,a)**2:
%o print (a,c, sod(c),moda(c,a))
%Y Cf. A028839, A061209, A115518, A130680.
%K base,nonn,more
%O 1,3
%A _Pieter Post_, May 08 2015
%E a(6) from _Giovanni Resta_, May 09 2015
%E a(7)-a(9) from _Chai Wah Wu_, Nov 29 2015